## Critical Minerals: A Matrix and 4 Propositions

Roderick G. Eggert Division of Economics and Business Colorado School of Mines reggert@mines.edu

Presented at "Minerals for a Green Society," organized by MMSA, Washington, DC

February 4, 2010

## Context

### Demand

- Material composition increasingly complex
- Potential rapid growth in demand for some minerals

### Supply

- Seemingly increasingly fragile
- More fragmented supply chains, US import dependence, export restrictions on primary raw materials, resource nationalism, increased industry concentration

## Possible Effects of Supply Restriction

### ≻ 2 forms

- Higher mineral prices
- Physical unavailability

### > Possible economic consequences

- *Firm*: "no build" situation, higher input costs
- Industry: lower output & profitability, use restricted to higher-valued applications, slower growth in emerging applications

### **Analytical Framework: Criticality Matrix**



Source: US National Research Council, *Minerals, Critical Minerals, and the US Economy* (2008).

### **Minerals Evaluated**



Source: US National Research Council, *Minerals, Critical Minerals, and the US Economy* (2008)

## Proposition #1: Limits on mineralresource availability...

. . .are more about <u>costs</u>, <u>distribution</u>, and <u>time frame</u> than about tonnes



# Reserve/Production Ratios (years remaining at then-current production rates)

|             | 1978 | 1995  | 2008 |
|-------------|------|-------|------|
| Crude oil   | 29   | 41    | 42   |
| Cadmium     | 38   | 29    | 24   |
| Cobalt      | 94   | 205   | 99   |
| Copper      | 65   | 32    | 35   |
| Iron ore    | 183  | 150   | 68   |
| Lithium     | na   | 350   | 150  |
| Molybdenum  | 92   | 47    | 41   |
| Rare earths | 221  | 1,390 | 710  |

Sources: BPAmoco, US Geological Survey, US Bureau of Mines



## Lithium: Cumulative Availability

(high and low cost estimates, projected cumulative demand to 2100)



#### Source: Yaksic and Tilton, 2009.

## Rare Earths, 2008

|           | Mine Production<br>(mt) | Reserves<br>(000 mt) | Reserve Base<br>(000 mt) |
|-----------|-------------------------|----------------------|--------------------------|
| Australia |                         | 5,200                | 5,800                    |
| Brazil    | 650                     | 48                   | 84                       |
| China     | 120,000                 | 27,000               | 89,000                   |
| CIS       | NA                      | 19,000               | 21,000                   |
| India     | 2,700                   | 1,100                | 1,300                    |
| Malaysia  | 380                     | 30                   | 35                       |
| USA       |                         | 13,000               | 14,000                   |
| Other     | NA                      | 22,000               | 23,000                   |
| Total     | 124,000                 | 87,378               | 154,219                  |

Source: US Geological Survey, www.minerals.usgs.gov

## The Temporal Dimension of Security of Supply

### Short- to medium-term reliability (up to a decade)

- Not simply a matter of import dependence
- Rather, risk factors such as:
  - Small existing market, rapid increase in demand
  - Concentrated supply (mine, company, or country)
  - Byproduct supply
  - Little or no spare capacity

#### Long-term availability (more than a decade)

- Not simply a matter of limited reserves today
- Rather, depends on:
  - Geologic and technical considerations

Proposition #2: Market pressures are effective in encouraging...

. . .investment that re-invigorates supply
. .users to provide 'insurance' against supply risks

Caution: market adjustments take time and often are chaotic

## Potential New Suppliers of Rare Earths

> Advanced exploration and development projects

- Heavy rare earths
  - Thor Lake, NWT (Avalon Rare Metals)
  - Hoidas Lake, Saskachewan (Great Western Minerals Group)
  - Bokan Mountain, Alaska (UCOR Uranium)
  - Strange Lake, Quebec (Quest Uranium)

# Potential New Suppliers of Rare Earths (continued)

### Light rare earths

- Mountain Pass, California (Molycorp)
- Lemhi Pass, Idaho (Thorium Energy)
- Mt Weld, Western Australia (Lynas)
- Important investment considerations
  - How sustainable is demand growth?
  - How technically sustainable is low-cost, high-quantity Chinese production?
  - How politically sustainable are Chinese export restrictions?

# Rare Earth Users

Short to medium term
Diversify sources of supply

 Invest in alternative sources of supply
 Develop tighter relations with suppliers
 Develop joint sharing arrangements
 Maintain stockpiles

Long-term substitution



# Substitution Examples

### > Molybdenum

- Price up 6x, 1978-79
- Led to more efficient use in alloyed steels; more heat treating allowed 25% reduction in Mo per unit of alloyed steel; not reversed when P fell

### Cobalt

- Price up significantly in 1978-79 due to demand increases and supply problems (civil unrest in central Africa)
- Reaction: increased R&D in aerospace/defense sector
- Substitution: Co-free ceramic magnets, other alloying elements (e.g., Ni)

Source: Crowson, pp. 40-44

Proposition #3: Chinese mercantilism should be...

- . . .a concern not an obsession
  - Yuan arguably undervalued even though it has appreciated 20% against the US\$ in last 4 years
  - Export restrictions on some raw materials benefit Chinese manufacturers of export goods

Note: Similarities between China today and Japan in 1970s

# Proposition #4: Government activities should focus on...

### …encouraging undistorted international trade

- …ensuring that policies and procedures for domestic mineral development appropriately integrate commercial, environmental, and social considerations
- Infacilitating provision of information on which private and public decisions are made
  - Including basic information on long-term availability and supply (geologic resources, above-ground stocks)
- …facilitating research and development
  - Especially on recycling of specialty metals used in small quantities in emerging uses

# **Extra Slides**



# **United States**

Historically, national defense (military) stockpiles, some support for basic research

Otherwise, private entities responsible for own 'insurance'

# **US National Defense Stockpile**

 April 2009 Report to Congress
Finding: transform stockpile into a broader Strategic Materials Security Program

- Integrated risk assessment
- Continuously monitor global markets
- Establish supply chain commitments with suppliers
- Monitor performance
- Store only limited amounts and types of materials

**COLORADO**SCHOOLOF**MINES** 

Source: Reconfiguration of the National Defense Stockpile Report to Congress, April 2009.

## Other Recommendations for Stockpile

- Suspend temporarily or limit the sale of 13 stockpiled commodities
  - Be, Cr, Nb, ferrochrome, ferromanganese, Ge, Ir, Pt, Ta, Sn, W, Zn
- Monitor 39 other materials as candidates for future supply-assurance activities
- Assess strategic sourcing of materials used in largest quantities by DOD (ranked by tons)
  - Al, Cu, Pb, fluorspar acid grade, Zn, PGMs, Mn ore chem/metal grade, Ni, ferrochrome, chomite ore, Ti sponge

# **European Commission**

- November 2008 raw materials initiative
- Motivation: export restrictions by exporters of raw materials threaten viability of European manufacturers
- > 3 principles
  - Obtain undistorted access to raw materials on international markets
  - Develop a framework to foster sustainable supplies from EU sources
  - Increase resource efficiency and promote recycling

Source: europa.eu

# Japan

Japan Oil, Gas, and Metals National Corporation (JOGMEC) established in 2004

 Combining Japan National Oil Corporation (established 1967) and Metal Mining Agency of Japan (1963)

Purpose: undertake activities to facilitate stable supplies



# **JOGMEC** Activities

- Providing financial assistance to Japanese companies for mineral exploration and deposit development
- Gathering and analyzing information on mineral and metal markets to understand supply risk

**COLORADO**SCHOOL

- Overseas geology and ore-deposit descriptions
- Mineral policies, legislation, regulations
- Market data and analysis
- Mining and environment

# **JOGMEC** (continued)

Managing Japan's economic stockpile of 'rare' metals, defined as those both (a) essential to Japanese industry and (b) subject to significant supply instability

• In cooperation with private Japanese firms

### Existing stocks

- Cr, Co, Mn, Mo, Ni, W, V
- 60 days of industrial use (42 held by JOGMEC, 18 by private Japanese firms)
- 2005: some Ni and W released to the market
- Under observation: Ga, In, Nb, Pt, rare earths, Sr, Ta

