

Critical Minerals (..er Penalty Elements) from Mine to Metal in the Copper Supply Chain

> Michael S. Moats (moatsm@mst.edu) Director – O'Keefe Institute

Missouri S&T

- Missouri University of Science and Technology
 - Known as University of Missouri-Rolla (UMR) 1962-2007
 - Missouri School of Mines and Metallurgy 1870-1962
- Enrollment
 - ~7650 total students (6100 undergrads and 1550 grads)
 - >90% majoring in STEM
- Programs covering entire metal supply chain
- Research
 - \$35-40 million per annum

Versere and Technology

MISSOURI

New Lead Be

State Lead/Zinc District

150

100

Old Lead Belt

ABLE SUPPLY

Thomas J. O'Keefe Institute for the Sustainable Supply of Strategic Minerals

- Combining existing excellence at Missouri S&T to develop technology, methodologies and policy to facilitate sustainable supply of strategic minerals for United States
- Member of the Critical Materials Institute

mining.mst.edu/research/okeefe-institute/

• Aqueous and Electrolytic Processing of Metals

- Critical Minerals
 - Battery grade Co production from Missouri resources
 - Ga, Ge, In capture from domestic zinc processing
- Copper Electrowinning
 - Amira P705D base metal electrowinning
- Copper Electrorefining
 - Group 15 elements deportment
 - Impact of nickel on cathode
- Electrogalvanizing
 - Improving zincate plating operation
- Grinding Media Corrosion

Decarbonization = Metal Production

- "Concerns about resources relate to quality rather than quantity."
- Long term trend ore grades are declining; deposits are becoming more complex (more impurities)

IEA (2021), The Role of Critical Minerals in Clean Energy Transitions, IEA, Paris https://www.iea.org/reports/the-role-ofcritical-minerals-in-clean-energy-transitions

Primary Copper Process Determined by Mineralogy

By-products mostly from non-hydrometallurgical processing

- "Oxides"
 - Malachite
 - Chrysocolla
 - Atacamite
- Secondary Sulfides
 - Covellite
 - Chalcocite
- Primary Sulfide
 - Chalcopyrite

Copper Production

Concentrate Growth Faster than SX-EW World: Primary Refinery ~ 66%, Secondary Refining ~ 17%, SX-EW ~17%

https://www.icsg.org/index.php/component/jdownloads/finish/170/2965

2017 USGS Critical Minerals List

	1 H 1.00794																	4.00260
_	3 Li 6.941	4 Be 9.012182											5 B 10.811	C 12.0107	7 N 14.00674	8 0 15.9994	9 F 18.9984032	10 Ne 20.1797
Critical Mineral	11 Na 22.989770	12 Mg 24.3050											13 Al 26.581538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
Base Metal	19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 CO 58.933200	28 Ni 58.6534	29 Cu 63.545	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se _{78.96}	35 Br 79.504	36 Kr 83.80
	37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 196.56655	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 26.90447	54 Xe 131.29
	55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.94.79	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.56655	80 Hg 200.59	81 TI 204.3833	82 Pb 207.2	83 Bi 08.58038	Po (209)	85 At (210)	86 Rn (222)
	87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		(289)		(293)

Energy Minerals

Batteries Li, Co, Ni, Mn

Pb, Sn, Sb

Solar Te, Si

Wind REE, Co, Sc

Infrastructure Cu, Fe, Al, Ag, Au

Barite	
Fluorspar	
Potash	

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.116	140.50765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0381	231.035888	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Some Critical Minerals are Penalty Elements

ASTM B115-00 Copper Specification

Element	Grade 1
Copper	99.95% min
Selenium, max	2 ppm
Tellurium, max	2 ppm
Bismuth, max	1.0 ppm
Group total, max	3 ppm
Antimony, max	4 ppm
Arsenic, max	5 ppm

- As, Sb, Bi are penalty elements in the concentrate
- Smelters charge miners for their presence above contractual levels
 - It costs money to dispose of the elements
 - The elements can foul the process and produce off spec copper

Element	Charge	For each	Exceeding
	(USS/t)	(%)	(%)
As	2.50	0.1	0.2
Sb	0.50	0.01	0.1
Bi	0.30	0.01	0.05
Cl	0.50	0.01	0.05
Pb	1.50	1.0	1.0
Zn	1.50	1.0	3.0
Ni + Co	0.30	0.1	0.5
$Al_2O_3 + MgO$	4.50	1.0	5.0
F	0.10	10 ppm	330 ppm
Hg	0.20	1 ppm	10 ppm

Table 1 - Japanese copper smelter penalty elements

Fountain, C., 2013. The whys and wherefores of penalty elements in copper concentrates, in: MetPlant 2013. Australasian Institute of Mining and Metallurgy, pp. 502–518.

Can We Create Value from Impurities?

• Can we create silk purses out of sow ears?

Nuss, P., T. E. Graedel, E. Alonso, and A. Carroll. "Mapping supply chain risk by network analysis of product platforms." Sustainable Materials and Technologies 10 (2016): 14-22.

Critical Minerals in Float-Smelt-Refine Process

In North America, copper hydrometallurgical process does not produce by-products

CM in Copper Deposits

- Porphyry deposits
 - Large-to-giant in size
 - Low-to-medium Cu grade
 - ~ 60 95% of global copper supply
- Deposits can host 10s to 100s ppm of critical elements
 - Commonly concentrated within sulfide minerals
 - Pyrite, Chalcopyrite, Bornite
 - Se and Te substitute for sulfur or tellurides
 - As and Sb in complex Cu sulfide minerals
 - Bi in complex or simple sulfides
- Generally, lack of information on the distribution behavior of critical elements within orebodies
 - Inaccurate sampling and assaying due to huge volumes and low grades
 - Potential association with gold and/or PGMs?

Maximum reported concentrations (ppm) of critical elements in chalcopyrite, bornite and pyrite from porphyry and other deposits

Mineral	Deposit Type	Se	Te	As	Sb	Bi
Chalconvrite	Porphyry	300	300	500	1000	0.53
(CuFeS2)	Skarn	538	6.6	0.54	0.28	37.9
(Cur c52)	Epithermal	300	0.04	0.73	4.2	0.05
Bornite	Porphyry	277	27.4	-	0.01	424
(CusFeS4)	Skarn	1046	148	2.3	44	7666
(Cusi C54)	Epithermal	299	75	8.1	11	839
	Porphyry	5.46	26.3	3230	-	-
Pyrite (FeS2)	Epithermal	535	343	2086	-	-
Pyrite (FeS2)	Carlin	4284	6600	472200	-	-
	Orogenic	199	20823	474000	-	-

Deportment during Mineral Processing

Concentrations of Se, Te, As, Sb and Bi in copper sulfide concentrates from different plants

Element	C1	C2	С3	C4	C5	C6	С7	C8	С9	C10
Cu (%)	21.7	16-19	25-28	20-26	41-45	28-32	16.6	-	-	-
Se(ppm)	-	8-15	<100	-	23	16	124	58	62	139
Te(ppm)	-	5-8	<100	<50	4.2	1.6	n/a	10	4.9	12
As(ppm)	3400	-	<100	<200	10	10	1197	-	-	-
Sb(ppm)	1600	-	<100	<100	5	7	8	-	-	-
Bi(ppm)	-	_	-	-	_	_	648	250	270	16

C1: Boliden/Sweden; C2:Hindustan Khetri./India; C3: Hindustan M Malanjkhand/India; C4: Assarel-Medet/Bulgaria; C5: Lumwana Malundwe/Zambia; C6: Lumwana Chimiwungo/Zambia; C7: Copper concentrator North America; C8: Mission Mine Complex-North/AZ-USA; C9: Mission Mine Complex South/AZ-USA; C10: Ray Mine/ AZ-USA

- Lack of information during rougher and scavenger stages of flotation
- Current public data are incomplete or inconsistent
 - Simple mass balance calculations
 - Lack of associated mineralogy for CMs
 - Poor fundamental understanding of CM deportment

- Two studies have examined Te deportment
 - ~10% Te reports to concentrate

Smelting and Converting

- Depends on furnace type
 - Most smelters recycle their dust (off gases)
 - Critical minerals eventually deport to anode or slag
- Difficult data to obtain
 - Values reflect grab samples
 - Confidential/proprietary information for custom smelters

Smelting

	A	rsenic (%)	Ar	ntimony	(%)	B	ismuth ((%)
Furnace	Matte	Slag	Gas	Matte	Slag	Gas	Matte	Slag	Gas
Outotec	15-40	5-25	35-80	60-70	5-35	5-25	30-75	2-30	15-65
Flash									
ISASMELT	5-9	3-18	73-90	19-40	3-52	8-72	4-24	0-1	75-96
SKS	6	12	82	12	71	17	19	11	70

	Seleniu	m (wt%)	Telluri		
Furnace	Matte	Slag	Gas	Matte	Slag	Gas
Outotec Flash	85	5-15	0-5	60-91	7-30	2-15
ISASMELT	n.d.	n.d.	n.d	71	18	11

Converting

	Arsenic ((wt%)		A	ntimon	y (wt%)		Bisr	nuth	(wt%)	
Furnace	Blister	Slag	Gas	B	lister	Slag	G	as	Blis	ter	Slag	Gas
Pierce-Smith	10-60	0-62	12-92	4	-78	7-89	9	-50	13-7	'5	2-30	15-67
Flash	42-52	28-	6-32	n	.d	n.d.	n	d	65-7	'3	14-	13-21
		42									16	
	Seleni	um (wt%	6)		Tellu	rium (v	vt%)					
Furnace	Blister	Slag	Gas		Bliste	r Sla	g	Gas				
Pierce-Smith	70-72	5-6	21-25		42	n.d	•	58				

Flue Dust

Description	Cu(%)	Se(%)	Te(%)	As(%)	Sb(%)	Bi(%)
"Flue Dust"	6-30	< 0.01	0.2	1-20	0.03-3	0.01-3.5
Outotec Flash	11-30	0.04	0.01	0.9-9	0.01-0.9	0.11-0.6
Bottom Blowing	15-28	n.d.	n.d.	8-14	n.d.	0.7-1.7
Pierce-Smith Converter	3.9-5.5	n.d.	n.d.	2.8-7.7	0.12-3.1	1.2-3.2

- Calculated ~1.2 million tonnes of dust per annum generated during copper smelting
- Dust recycling within a smelter increases concentrations of CM
 - Not clear what the sustainable production potential of these elements would be
 - Te concentration is from one published value

Value of potential critical elements in smelter flue dusts. Prices reflect average 2015-2019 price for Cu, Se, Te, Sb and Bi metals and As2O3 (USGS, 2020)

Potential in Flue Dusts	Cu	Se	Te	As	Sb	Bi
Dust Grade	18%	0.005%	0.2%	10%	1.5%	1.8%
Price (USD/kg)	5.8	42	134	0.58	8.1	10.6
Tons per year contained in dust	216000	60	2400	120000	18000	21600
Value (millions USD/yr)	1300	3	320	60	150	230
% of total value in flue dusts across these elements	62.1	0.1	15.9	3.3	7.2	11.3

Electrorefining Anodes

Element	Weighted Average Anode Composition (ppm)
Selenium	390
Tellurium	113
Arsenic	1239
Antimony	323
Bismuth	257

M. Moats, L. Alagha, and K. Awuah-Offei. Towards resilient and sustainable supply of critical elements from the copper supply chain: A review. Accepted by *Journal* of *Cleaner Production*

Deportment of Critical Minerals in Electrorefining

	Anode	9	After Dissolution	
Element	Solid Solution	Inclusion	Slimes	Electrolyte
Selenium	0%	100%	98%	2%
Tellurium	0%	100%	98%	2%
Arsenic	30-60%	40-70%	20-80%	20-80%
Antimony	10-30%	70-90%	30-70%	30-70%
Bismuth	0%	100%	30-70%	30-70%

M. Moats, L. Alagha, and K. Awuah-Offei. Towards resilient and sustainable supply of critical elements from the copper supply chain: A review. Under review by *Journal of Cleaner Production*

Slimes

Characteristics		Average Value	
kg per tonne of anode		5.5	
Element	%	Element	%
Cu	21.7	As	3.3
Ag	9.4	Sb	3.9
Au	0.7	Bi	1.3
S	5.5	Pb	11.6
Se	8.3	Fe	0.2
Те	1.9	Ni	3.8

M. Moats, A. Filzwieser, S. Wang, W. Davenport, T. Robinson, A. Siegmund (2019) Global Survey of Copper Electrorefining: 2019 World Tankhouse Operating Data. Proceedings of the 58th Annual Conference of Metallurgists (COM) hosting the 10th International Copper Conference – Copper 2019, Vancouver, Canada, August 18-21, 2019

- Significant enrichment of Se, Te, As, Sb and Bi
- Facilities the potential recovery of critical minerals while targeting the recovery of gold and silver

Critical Mineral Recovery – Many Options

Industrial

Wang, S., Westrom, B., & Fernandez, J. A. (2003). The recovery of tellurium from copper refinery slimes. COBRE 2003 Volume V, 273-285.

Ando, K., & Tsuchida, N. (1997). Recovering Bi and Sb from electrolyte in copper electrorefining. *JOM*, *49*(12), 49-51.

2014-2019 World Survey Data Analysis By-Product Potential in Anodes

31 Refineries Surveyed – 8.0 million tonnes of Refined Copper (40% of World Production)

O'KEEFE INSTITUT

SUSTAINABLE SUPPLY

TRATEGIC MINERAL

Element	Calculated world	Estimated 2019 world	
	potential in anodes,	production, t	
	t/yr		
Selenium	7900	2800	
Tellurium	2300	470	
Arsenic	25000	25000	
Antimony	6500	160000	
Bismuth	5200	19000	

Potential value (millions USD/yr) of metals contained in copper anodes at U.S. refineries

Element	Refinery 1	Refinery 2	Refinery 3	Price
Copper	1200	800	1200	\$5.8/kg
Gold	290	12	68	\$1270/tr.oz.
Silver	47	49	74	\$16.4/tr.oz.
Selenium	5.3	3.0	5.1	\$42/kg
Tellurium	2.3	1.1	1.5	\$134/kg
Arsenic	0.22	0.03	0.04	\$0.55/kg
Antimony	0.05	0.09	0.29	\$8.1/kg
Bismuth	1.2	0.26	0.24	\$10.6/kg

2019 Production and Import data from USGS - https://www.usgs.gov/centers/nmic/commodity-statistics-and-information

Moats, M., Alagha, L., & Awuah-Offei, K. (2021). Towards resilient and sustainable supply of critical elements from the copper supply chain: A review. Journal of Cleaner Production, 127207.

https://www.riotinto.com/en/news/releases/2021/Rio-Tinto-to-build-new-tellurium-plant-at-Kennecott-mine

SUSTAINABLE SUPPLY

North America Copper Refineries Critical Minerals

- Refinery 1
 - Extracts Sb and Bi from electrolyte disposed
 - Se and Te recovery (processes other refineries Cu_2Te)
 - PGM recovery
 - Sb, Bi, As recycled to smelter
- Refinery 2
 - Treats slimes from two refineries
 - Te and Se recovery
 - PGM recovery
 - Bleeds solution to SX Te, Sb, Bi loss
- Refinery 3 (on care and maintenance)
 - Te recovery as Cu₂Te
 - Se recovery circuit not running
 - PGM recovery not running
 - Slimes further processed elsewhere
 - Bi recovery circuit with salable product not running
 - Sb, Bi, As in solution disposed

- Refinery 4
 - Te recovered as Cu_2 Te
 - Slimes processed elsewhere
 - Sb, Bi, As recycled to smelter
- Refinery 5
 - Te recovered as Cu₂Te (being built)
 - Se recovered
 - Bi recovery pilot designed, but not built, disposed
 - Sb, As are disposed
- Au, Ag and PGM are very valuable and are the focus of recovery
- All other elements are impurities and need removal
 - Removal may mean recovery, may not
- Can more Te be recovered?
- Can Bi/Sb recovery be targeted?

Just Developing New Mines will not Close the Supply Gap!

Closing Domestic Supply Chain Gaps

Support mineral exploration to uncover new deposits

Streamline mine permitting process

Develop processing and refining infrastructure and innovation

Facilitate off-take agreements between domestic "mining" and "green energy" companies

Educate workforce needed for critical minerals supply and green energy transition

Summary

- Primary copper production in North America has declined, so has by-product production
- The world copper supply chain could supply tellurium, bismuth and arsenic needs

- Without new U.S. smelters, these will be produced elsewhere

- Critical mineral capture suffers because of the relatively low value and low tonnage in the copper supply chain
- Incentives and research are needed to improve critical mineral recovery from the copper supply chain

You are invited!

